全球彩票平台_全球彩票注册平台|官网下载地址

热门关键词: 全球彩票平台,全球彩票注册平台,全球彩官网下载地址

【全球彩官网下载地址】鉴定识别手写数字

学习笔记TF024:TensorFlow实现Softmax Regression(回归)识别手写数字

TensorFlow实现Softmax Regression(回归)识别手写数字。MNIST(Mixed National Institute of Standards and Technology database),简单机器视觉数据集,28X28像素手写数字,只有灰度值信息,空白部分为0,笔迹根据颜色深浅取[0, 1], 784维,丢弃二维空间信息,目标分0~9共10类。数据加载,data.read_data_sets, 55000个样本,测试集10000样本,验证集5000样本。样本标注信息,label,10维向量,10种类one-hot编码。训练集训练模型,验证集检验效果,测试集评测模型(准确率、召回率、F1-score)。

算法设计,Softmax Regression训练手写数字识别分类模型,估算类别概率,取概率最大数字作模型输出结果。类特征相加,判定类概率。模型学习训练调整权值。softmax,各类特征计算exp函数,标准化(所有类别输出概率值为1)。y = softmax(Wx b)。

NumPy使用C、fortran,调用openblas、mkl矩阵运算库。TensorFlow密集复杂运算在Python外执行。定义计算图,运算操作不需要每次把运算完的数据传回Python,全部在Python外面运行。

import tensor flow as tf,载入TensorFlow库。less = tf.InteractiveSession(),创建InteractiveSession,注册为默认session。不同session的数据、运算,相互独立。x = tf.placeholder(tf.float32, [None,784]),创建Placeholder 接收输入数据,第一参数数据类型,第二参数代表tensor shape 数据尺寸。None不限条数输入,每条输入为784维向量。

tensor存储数据,一旦使用掉就会消失。Variable在模型训练迭代中持久化,长期存在,每轮迭代更新。Softmax Regression模型的Variable对象weights、biases 初始化为0。模型训练自动学习合适值。复杂网络,初始化方法重要。w = tf.Variable(tf.zeros([784, 10])),784特征维数,10类。Label,one-hot编码后10维向量。

Softmax Regression算法,y = tf.nn.softmax(tf.matmul(x, W) b)。tf.nn包含大量神经网络组件。tf.matmul,矩阵乘法函数。TensorFlow将forward、backward内容自动实现,只要定义好loss,训练自动求导梯度下降,完成Softmax Regression模型参数自动学习。

定义loss function描述问题模型分类精度。Loss越小,模型分类结果与真实值越小,越精确。模型初始参数全零,产生初始loss。训练目标是减小loss,找到全局最优或局部最优解。cross-entropy,分类问题常用loss function。y预测概率分布,y'真实概率分布(Label one-hot编码),判断模型对真实概率分布预测准确度。cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))。定义placeholder,输入真实label。tf.reduce_sum求和,tf.reduce_mean每个batch数据结果求均值。

定义优化算法,随机梯度下降SGD(Stochastic Gradient Descent)。根据计算图自动求导,根据反向传播(Back

学习笔记TF024:TensorFlow实现Softmax Regression(回归)识别手写数字,tf024softmax

TensorFlow实现Softmax Regression(回归)识别手写数字。MNIST(Mixed National Institute of Standards and Technology database),简单机器视觉数据集,28X28像素手写数字,只有灰度值信息,空白部分为0,笔迹根据颜色深浅取[0, 1], 784维,丢弃二维空间信息,目标分0~9共10类。数据加载,data.read_data_sets, 55000个样本,测试集10000样本,验证集5000样本。样本标注信息,label,10维向量,10种类one-hot编码。训练集训练模型,验证集检验效果,测试集评测模型(准确率、召回率、F1-score)。

算法设计,Softmax Regression训练手写数字识别分类模型,估算类别概率,取概率最大数字作模型输出结果。类特征相加,判定类概率。模型学习训练调整权值。softmax,各类特征计算exp函数,标准化(所有类别输出概率值为1)。y = softmax(Wx b)。

NumPy使用C、fortran,调用openblas、mkl矩阵运算库。TensorFlow密集复杂运算在Python外执行。定义计算图,运算操作不需要每次把运算完的数据传回Python,全部在Python外面运行。

import tensor flow as tf,载入TensorFlow库。less = tf.InteractiveSession(),创建InteractiveSession,注册为默认session。不同session的数据、运算,相互独立。x = tf.placeholder(tf.float32, [None,784]),创建Placeholder 接收输入数据,第一参数数据类型,第二参数代表tensor shape 数据尺寸。None不限条数输入,每条输入为784维向量。

tensor存储数据,一旦使用掉就会消失。Variable在模型训练迭代中持久化,长期存在,每轮迭代更新。Softmax Regression模型的Variable对象weights、biases 初始化为0。模型训练自动学习合适值。复杂网络,初始化方法重要。w = tf.Variable(tf.zeros([784, 10])),784特征维数,10类。Label,one-hot编码后10维向量。

Softmax Regression算法,y = tf.nn.softmax(tf.matmul(x, W) b)。tf.nn包含大量神经网络组件。tf.matmul,矩阵乘法函数。TensorFlow将forward、backward内容自动实现,只要定义好loss,训练自动求导梯度下降,完成Softmax Regression模型参数自动学习。

定义loss function描述问题模型分类精度。Loss越小,模型分类结果与真实值越小,越精确。模型初始参数全零,产生初始loss。训练目标是减小loss,找到全局最优或局部最优解。cross-entropy,分类问题常用loss function。y预测概率分布,y'真实概率分布(Label one-hot编码),判断模型对真实概率分布预测准确度。cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))。定义placeholder,输入真实label。tf.reduce_sum求和,tf.reduce_mean每个batch数据结果求均值。

定义优化算法,随机梯度下降SGD(Stochastic Gradient Descent)。根据计算图自动求导,根据反向传播(Back

本文由全球彩票平台发布于全球彩官网下载地址Web前端,转载请注明出处:【全球彩官网下载地址】鉴定识别手写数字

TAG标签: 全球彩票平台
Ctrl+D 将本页面保存为书签,全面了解最新资讯,方便快捷。